125 research outputs found

    Aboveground net primary productivity of vegetation along a climate-related gradient in a Eurasian temperate grassland: spatiotemporal patterns and their relationships with climate factors

    Get PDF
    Accurate assessments of spatiotemporal patterns in net primary productivity and their links to climate are important to obtain a deeper understanding of the function, stability and sustainability of grassland ecosystems. We combined a satellite-derived NDVI time-series dataset and field-based samples to investigate spatiotemporal patterns in aboveground net primary productivity (ANPP), and we examined the effect of growing season air temperate (GST) and precipitation (GSP) on these patterns along a climaterelated gradient in an eastern Eurasian grassland. Our results indicated that the ANPP fluctuated with no significant trend during 2001-2012. The spatial distribution of ANPP was heterogeneous and decreased from northeast to southwest. The interannual changes in ANPP were mainly controlled by year-to-year GSP; a strong correlation of interannual variability between ANPP and GSP was observed. Similarly, GSP strongly influenced spatial variations in ANPP, and the slopes of fitted linear functions of the GSP-ANPP relationship increased from arid temperate desert grassland to humid meadow grassland. An exponential function could be used to fit the GSP-ANPP relationship for the entire region. An improved moisture index that combines the effects of GST and GSP better explained the variations in ANPP compared with GSP alone. In comparisons with the previous studies, we found that the relationships between spatiotemporal variations in ANPP and climate factors were probably scale dependent. We imply that the quantity and spatial range of analyzed samples contribute to these different results. Multi-scale studies are necessary to improve our knowledge of the response of grassland ANPP to climate change.ArticleENVIRONMENTAL EARTH SCIENCES.76(1):56(2017)journal articl

    A Piezoelectric Immunosensor Using Hybrid Self-Assembled Monolayers for Detection of Schistosoma japonicum

    Get PDF
    BACKGROUND: The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1:1500 to 1:60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973. CONCLUSIONS/SIGNIFICANCE: We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory

    MicroRNA-34a Inhibits the Proliferation and Metastasis of Osteosarcoma Cells Both In Vitro and In Vivo

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenously expressed, small noncoding RNAs, which suppress its target mRNAs at the post-transcriptional level. Studies have demonstrated that miR-34a, which is a direct target of the p53 tumor suppressor gene, functions as a tumor suppressor and is associated with the tumor growth and metastasis of various human malignances. However, the role of miR-34a in osteosarcoma has not been totally elucidated. In the present study, the effects of miR-34a on osteosarcoma and the possible mechanism by which miR-34a affected the tumor growth and metastasis of osteosarcoma were investigated. METHODOLOGY/PRINCIPAL FINDING: Over-expression of miR-34a partially inhibited proliferation, migration and invasion of osteosarcoma cells in vitro, as well as the tumor growth and pulmonary metastasis of osteosarcoma cells in vivo. c-Met is a target of miR-34a, and regulates the migration and invasion of osteosarcoma cells. Osteosarcoma cells over-expressing miR-34a exhibited a significant decrease in the expression levels of c-Met mRNA and protein simultaneously. Finally, the results from bioinformatics analysis demonstrated that there were multiple putative targets of miR-34a that may be associated with the proliferation and metastasis of osteosarcoma, including factors in Wnt and Notch signaling pathways. CONCLUSION/SIGNIFICANCE: The results presented in this study demonstrated that over-expression of miR-34a could inhibit the tumor growth and metastasis of osteosarcoma probably through down regulating c-Met. And there are other putative miR-34a target genes beside c-Met which could potentially be key players in the development of osteosarcoma. Since pulmonary metastases are responsible for mortality of patient carrying osteosarcoma, miR-34a may prove to be a promising gene therapeutic agent. It will be interesting to further investigate the mechanism by which miR-34a functions as a tumor suppressor gene in osteosarcoma

    Uncoupled Embryonic and Extra-Embryonic Tissues Compromise Blastocyst Development after Somatic Cell Nuclear Transfer

    Get PDF
    Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way

    A Comparison of Negative Pressure and Conventional Therapy in Spine Infections: A Single-Center Retrospective Study

    No full text
    Purpose: To investigate the effectiveness and safety of negative-pressure wound therapy (NPWT) in treating primary spinal infections. Methods: Patients who underwent surgical treatment for primary spinal infection between January 2018 and June 2021 were retrospectively evaluated. They were divided into two groups based on the type of surgery: one that underwent negative-pressure wound therapy (NPWT) and another that underwent conventional surgery (CVSG-Posterior debridement, bone grafting, fusion, and internal fixation in one stage). The two groups were compared in terms of the total operation time, total blood loss, total postoperative drainage, postoperative pain score, time for the postoperative erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) to return to normal, postoperative complications, treatment time, and recurrence rate. Results: A total of 43 cases of spinal infection were evaluated, with 19 in the NPWT group and 24 in the CVSG group. The NPWT group had a superior postoperative drainage volume, antibiotic use time, erythrocyte sedimentation rate and CRP recovery times, VAS score at 3 months after the operation, and cure rate at 3 months after operation compared with the CVSG group. There were no significant variations in the total hospital stay and intraoperative blood loss between the two groups. Conclusions: This study supports the use of negative pressure in the treatment of a primary spinal infection and indicates that it has a notably better short-term clinical effect than conventional surgery. Additionally, its mid-term cure rate and recurrence rate are more desirable than those of conventional treatments
    • …
    corecore